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There are a number of papers devoted to the construction of the exact solitary wave 
solution using a series. Power series in amplitude or Fourier series have usually been 
used. In the present paper we accomplish the exact summation of the Witting (1975) 
series and show that this series describes other flows, not solitary waves. One such 
flow is fluid suction under a curvilinear roof. The left half of it is similar to the left 
half of a maximal-amplitude solitary wave flow. 

1. Introduction 
The solitary wave at a fluid surface has been the object of study of many authors 

from its discovery by Russel (1838). Boussinesq (1871), Rayleigh (1876), Korteweg 
& de Vries (1895) were the pioneer investigators of this problem. They developed 
approximate theories representing small-amplitude solitary waves. 

The exact statement of the problem for a large-amplitude wave requires a more 
complete theory although many papers have been written on this subject. The 
existence of the solution was not proved until the results of Lavrentyev (1946) and 
Friedrichs & Hyers (1954). Stokes (1880) conjectured that the highest wave would 
be characterized by sharp crest with the angle 120". The hypothesis was justified 
by Toland (1978) and Plotnikov (1983). The occurrence of two completely different 
solitary waves moving with equal velocities has been revealed numerically by Longuet- 
Higgins & Fenton (1974) and Byatt-Smith & Longuet-Higgins (1976). More recently 
Plotnikov (199 1) proved the non-uniqueness theorem for the solitary wave problem. 
Craig & Sternberg (1988) proved the symmetry of a solitary wave profile relative to 
the vertical axis. 

Nontheless these and other excellent precise results do not provide methods for 
determining the free-surface shape, mass, energy and momentum. To evaluate the 
profile and parameters of the flow two groups of numerical methods were used. 
The first group is based on a numerical summation of various series representing the 
solution. Power series with respect to the small wave height were used in the studies of 
Fenton (1972), Longuet-Higgins & Fenton (1974), Pennel & Su (1984), Pennel (1987). 
Longuet-Higgins & Fenton carried out particularly extensive calculations. Using the 
changes of variables in power series and Pade summation method, they estimated 
many parameters of solitary waves everywhere up to a maximum amplitude. Some 
other types of series were used by Witting (1975), Ovsyannikov (1991) and Karabut 
(1994), who used expansions with respect to special families of functions. The 
numerical summation of different series provides either the same or closely similar 
results. These results as a whole agree closely with those obtained by numerical 
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methods of the second group involving finite difference approximations applied to 
the integro-differential equation equivalent to the problem considered. The results are 
presented in the papers of Byatt-Smith & Longuet-Higgins (1976), Williams (1981), 
Witting (1981) and Hunter & Vanden-Broeck (1983). There are minor differences in 
the calculated values of parameters for high-amplitude waves. For example, the value 
of a ratio of maximum amplitude to a fluid depth at infinity obtained from numerical 
calculations based on a series method is 

0.827. (1.1) 

0.833, (1.2) 

This number slightly differs from the value 

obtained by methods of the second group. 
Previously, differences in numerical results obtained by different techniques were 

explained by the unsufficient accuracy of the Pad6 summation method (Pennel 1987) 
or by the small number of series terms (Pennel & Su 1984). Witting (1975) explained 
the differences by the fact that the series used are incomplete. In our opinion this 
explanation appears to be valid. In the present work further evidence in favour of this 
assertion is found. The essential result of the present paper is the exact summation 
of the Witting series. The summation problem is reduced to finding the solution of a 
special system of ordinary differential equations. It is shown that the Witting series 
do not describe solitary waves but correspond to some other stationary flows of a 
heavy fluid with a free boundary. One such solution corresponding to fluid suction 
under a curvilinear roof is analysed in this paper. 

Previously, Villat (1915) found the solution of the problem of flow over an uneven 
bottom of a specific shape. The exact solution to the problem of fluid flow over the 
bottom of a step form was gived by Richardson (1920). Additional examples of exact 
solutions (their number is no more than 10) can be found in Gurevich (1965). In 
this paper we added a new one-parameter family of exact solutions to these separate 
examples. 

Two theories of surface waves, namely the linear theory of small-amplitude waves 
and the nonlinear theory of long waves, are well developed. The former does not 
describe solitary waves and the latter describes only small-amplitude solitary waves. 
In the theory suggested by Davies (1951) the initial nonlinear boundary value problem 
is changed slightly so that the new problem admits the exact solution. This solution 
may be considered as the first approximation. The application of this approach to the 
solitary wave problem was realized by Packham (1952). The theory describes surface 
waves over all range of amplitudes with an accuracy of 11-13%, and in Goody & 
Davies (1957) this solution is tabulated. 

Another theory may be developed using the results of this article. The flows 
described by the Witting series are very close to solitary waves. This permits one to 
use these flows for an approximate modelling of solitary waves. The flow considered 
in this paper is close to the maximum-amplitude solitary wave. 

2. Formulation of the problem 
Consider the two-dimensional steady irrotational flow under gravity of an inviscid 

incompressible fluid of uniform density over an even bottom. The capillarity effects 
are neglected. Let the Cartesian coordinate X-axis be directed along the bottom and 
the Y-axis be directed vertically upward (figure la). The origin of the coordinate 
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FIGURE 1. ( u )  Z-plane; ( b )  X-plane: ( c )  <-plane 

system is on the bottom and the Y-axis crosses the free surface at the highest point. 
The velocity of the flow and the depth of the fluid at infinity are denoted as uo ( U O  > 0) 
and ho respectively, g is the acceleration due to gravity. 

To describe a solitary wave we have to find a solution of the Euler equations with 
a local elevation of the free boundary Y = Yo(X),  diminishing at infinity 

lim Y o ( X )  = ho. 
IXl+X 

The solution depends on 

or the Stokes parameter 
from 

one parameter. The Froude number 

Fr = ___ uo > 1 
(gho)1'2 

6 may be considered. The value of 8 may be determined 

tan8 
FY = ~ 6 .  

This equation has infinitely many roots. The Stokes parameter is the root located in 
the interval 0 d 6 < n/2. The limit 8 ---f 0 corresponds to small-amplitude solitary 
waves. The amplitude increases with growing 8. 

In some earlier papers the solution of the problem of a solitary wave was represented 
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as the following series: 

-- yo(x) - 1 + a, (sech "> 2 n .  
h0 n=l 2hO 

These series are similar in appearance and they can be found from each other 
by interchanging the summation order. However, they are obtained with different 
assumptions. The asymptotic expansion (2.1) is suited to small amplitudes, whereas 
when constructing (2.2) the assumption of the small amplitude is not used. 

The series (2.1) is a classical series of the shallow water theory. Friedrichs (1948) 
proposed a systematic procedure to find the highest approximations of shallow water 
theory. The first, second and third approximations were obtained by Keller (1948), 
Laitone (1960) and Grimshaw (1971), respectively. Using computers the solution of 
the form (2.1) is found: up to el8 by Fenton (1972), up to 02* by Longuet-Higgins & 
Fenton (1974), up to 034 by Pennel & Su (1984), up to 054 by Pennel (1987). 

The series (2.2) was used by Pennel & Su (1984). Substituting (2.2) into the 
boundary conditions, one can find the coefficients a,. The first coefficient a1 remains 
indefinite and all the other ones are determined by it. 

We shall formulate a solitary wave problem in the plane of the complex potential 
@ + iY and shall consider similarities of the series (2.1), (2.2). The problem is 
simplified because the boundary-value problem in a unknown region is replaced by 
the boundary-value problem in the fixed infinite strip in the plane @ + iY. Let the 
velocity potential Qi take a zero value on the symmetry line BD (figure la). The 
stream function Y is chosen so that it takes a zero value at the bottom. 

In the plane of the non-dimensional complex potential 

e x = cp + iw = -(@ + iY) 
houo 

the flow region occupies the infinite strip of width 0 (figure lb). The problem is to 
find a conformal mapping of this strip on the flow region in the physical plane. Let 
this conformal mapping be represented in the form 

The problem is reduced to determining the function 

W(x)  = 4% w) + Wcp, w), 
which is analytical in the strip 

and satisfies the following boundary conditions. At the upper strip boundary the 
constant-pressure condition (the Bernoulli integral) is fulfilled. It can be written in 
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(2.4) 

2v2B2 
- (B; + B;) , v = cot 8. 

= 1-2vB 
At the lower strip boundary the flat-bottom condition is fulfilled 

B = O  (w =O).  (2.5) 
The additional condition 

distinguishes the solitary wave solution from another solutions of the surface waves 
theory. In the plane of the complex potential series similar to (2.1) and (2.2) have the 
following form respectively : 

W 

W = b, 1' p'dx. 
i7=l 

Here 

,J- = 2 (sech i)'. 
The series (2.8) was proposed by Ovsyannikov (1991). One can obtain recurrent 

formulae for sequentially found coefficients bn by substituting (2.8) into the boundary 
condition (2.4). The coefficient bl remains undefined and the rest are functions of 
it. The problem of determining the first coefficient was solved by Ovsyannikov. He 
suggested determining bl from the equation 

e dmf coshcpdcp-bl 

Here f is the function from the boundary condition (2.4). The numerical solution of 
the equation (2.9) was performed by Karabut (1994). 

Witting (1975) proposed considering the power series with respect to enx (A > 0): 
oc 

W = CEje '" .  (2.10) 
j=l 

Let E j  be real numbers. Then the condition on the bottom (2.5) will be fulfilled. 
The boundary condition of pressure constancy (2.4) may also be satisfied. For this 
purpose we substitute the imaginary part of (2.10) 

m 

B = EjeJnq sin j&  
j=l 

into (2.4) and collect the terms with the same exponents eJ'V. As a result we obtain 
the recurrent formulae for coefficients Ej : 

( j A  cos j M  - v sin jA8)Ej  = Rj(E1, Ez,. . . , Ej-1; 8, A). (2.11) 
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For j = 1 we obtain the equation 

(1 cos 18 - v sin AO) El = 0. 

Hence the coefficient El is undefined and I z  should be found from the equation 

Using the designation 8 = A8, this equation may be rewritten in the form 

tan 10 = I z  tan 0. (2.12) 

tan0 tan0 
e 0 

= Fr2 - 

or in the form of the system: 

q = tano, q = Fr28, 

the graphical solution of which is given in figure 2. There is an infinite set of roots 

0, 81, 02 ,  o3, . .  . , 

l o  = 1, 11, 1 2 ,  A3 )... , 
The following question arises: what harmonic 1 j  have we to choose? Witting (1975) 

suggested that the solution of the solitary wave problem should include all harmonics 
lj. None of the above series (2.1), (2.2), (2.7), (2.8) complies with the requirement. At 
the same time he proposed that the harmonic 10 = 1 contributes more significantly 
to the solution than other harmonics. Therefore, the solution of the solitary wave 
problem may be approximated as the series (2.10), setting I z  = 1 :  

which allow us to obtain an infinite set of solutions to equation (2.12) 

00 

W = C E j C j  ( c  = ex, I m E j  = 0).  (2.13) 

Witting computed more than 200 terms of this series and then numerically summed 
it. For 8 = x/4 he constructed a free surface and for 8 = x / 3  he found a singular 
point at the free surface. There are singularities at the free surface only in the case 
of a limiting amplitude wave. Therefore, the conclusion was drawn that the solitary 
wave of a limiting amplitude corresponds to 8 = x/3. 

Below is shown how the exact summation of the series (2.13) may be done and this 
is exemplified for 8 = n/3. 

j=l 

3. The Witting series 
The boundary value problem (2.4), (2.5), (2.6) is invariant under the translation 

cp + cp + cpo. The solution of this problem in the form of power series (2.13) also 
does not depend on 90. Therefore the recurrent formulae (2.11) with 1 = 1 should be 
invariant under the transformation 

E j  + 6jEj, 6 = e-(po, j 2 1. 

Let 6 = 1/E1. Then the values 
8. - 61E. - E .  

J -  J -  .llE{> 
defined by the recurrent formulae 

( j  cos j 8  - v sin j Q E j  = ~j (I ,& ,..., Ej-l;e,l), j 2 2 
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FIGURE 2.  Graphical illustration of equation (2.12). 

are the functions of 0 alone, i.e. they are independent of El.  It follows that 

Ej(v, E l )  = E i  Ej(v) ( j  2 2). 

Consider, for example, the first three formulae of (3 .1)  

115 

E2 = E: (-:v' + 7) 1 , 
E3 = E: ($v4  - ;v' + &) , 
E4 = E f  (-gv8 + gv6 - t v 4  + $ v 2  - &) / (5v2 - 1 )  . 

The first coefficient El is undefined, however it may be taken as an arbitrary 
positive number. In figure l ( c )  the picture in the plane [ = ex is presented. The ray 
emerging from an origin of the coordinate system and inclined at the angle 8 to a 
real axis corresponds to a free surface. Therefore substituting [ = reis in (2.13) we 
get the free-surface profile 

Introduce s = E l r .  We get another parametric representation 

Ins - lnEl + i0 + F ( s )  

j= 1 
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It follows from these formulae that the variation of El results in the translation of the 
profile along the X-axis. Thus, the Witting solution with fixed 0 describes a unique 
flow with an accuracy of a translation along X-axis. 

Let o = eie. From this point on we shall consider W as a function of the variable 
5 = ex. Consider the infinite set of functions: 

This set represents the function W ( [ )  in various coordinate systems having a common 
centre at point A (figure lc) and rotated at an angle 28 with respect to each other. 
In general, the function W ( [ )  at point A may have a branch point singularity. It 
may happen that the initial value of W ( [ )  would be never attained after any finite 
number of rotations about A. The equality PI = Pj (2 # j )  will not be fulfilled even 
in the case of rational number 0/n. 

Suppose that there exists a ring 0 6 rI < 151 < 12 which has no singular points of 
the function W(5). Let us show that the problem of determining W ( [ )  satisfying the 
conditions (2.4)' (2.5) in this ring is equivalent to finding of the solution of the infinite 
system of ordinary differential equations for the unknown functions PI([). 

Rewrite the boundary-value condition (2.4) in the form 

v = cot 0 (y = 0). 
d(W+X) - 1 1 dX I - 1 - 2 v I m W '  

Differentiating along the free surface we obtain the equality 

(3-3) 

In the 5-plane the bottom condition is fulfilled on the positive real axis: 

Im W = O .  

Therefore, the function W(5) defined in the upper half-plane admits analytic contin- 
uation into the lower half-plane according to the symmetry principle : 

We have from (3.2) 

pI (re-ifl(2l-l) ) = w (re-") , 
p 1+1 (,,e-iO(21-l) ) = w (reie). 

Referring to (3.5) we can conclude that the functions Pl(c), Pl+1((), taken at the ray 
[ = re-iO(21-1) are no more nor less then the functions w, W ,  respectively taken at 
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the free surface ABC. Thus, (3.4) may be rewritten: 

( r  dr ) + ( dPl (r;:(2’-1) ) +1) 
d p  (re-io(2l-1) 

1 - - 

11‘ 1 + iv [ P / + ~  (re-iW-1)) - pl (re-W-1) 

Here the derivatives do not need to be taken along the given ray if we take into 
account the analyticity of the functions P ~ , P I + ~ .  Thus, the last equation may be 
rewritten as 

We analytically continued the differential equation from the ray [ = re-io(2’-1) to the 
ring. Then the functions Pl have to satisfy the following infinite system of ordinary 
differential equations : 

Firstly, if we assume that W ( [ )  is the analytical function in the vicinity 5 = 0 and, 
secondly, that B = nm/n  (m,n  are the integers) then this system will be finite. In this 
case Pn+l = P1. Note that the assumption of analyticity is connected with the form 
of the Witting solution (2.13) which is a power series with respect to the variable [. 

Hence if 0/n is a rational number then for summing (2.13) it is sufficient to find 

p1, p2, . . ., Pn, 
i.e. the solution of the system of n ordinary differential equations 

1 
1 + iv(Pj+l - Pi) ’ (3.6) 

Pn+l zi PI, j = 1,. . . , n 
satisfying, as is evident from (3.2), the conditions 

and then to determine W by the equality W = P I .  

4. A special case 
Here, we shall use the Witting series (2.13) for an approximate description of a 

solitary wave with the limiting amplitude. What value of 6 has to be chosen in this 
case? It is necessary to take the value of 0 such that the free surface has singularities. 
The solution of the system (3.6) has this feature when 0 = n/3. This agrees with the 
Witting (1975) numerical results. The numerical results of other authors also give 
value close to n/3. 
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For 8 = 4 3  the system (3.6) consists of only three equations 

(P; f 1) (Pi + 1) = 1/fi, (P i  + 1) (Pi + 1) = 1 / f2 ,  (Pi + 1) (Pi  -k 1) = l / f 3 ,  

where 

This system may be reduced to the normal form 

. (4.2) P I + l =  f 2  P i + l =  f 3  p;+1= fl 
(f I f  2f 3 P 2  ' (f l f 2 f 3 P 2  ' (f 1 f 2 f  3 P2 

Introduce the following functions 

From (3.2) it follows that 

Using (4.3) and (2.13), we obtain the relations 

Let us transform the system (4.2) to the new unknowns S1, S2, S3. It follows from (4.4) 
and (4.1) that fl,f2, f 3  do not depend on S3. The linear combination of the equations 
gives the equalities 

Hence S1 and S2 satisfy the relation 

S1 S2 = const. 

Here, the constant is equal to zero because it follows from (4.3) that S1 = S2 = 0 
at < = 0. Thus one of these functions is the identical null. Since El > 0, this is S2. 
Taking it into account we have f 1f2 f 3  = 1 + S:. As a consequence 

(4.5) 
1 - S1 d(S3 + x) - 

dx (1 + s y 2  ' dx (1 + s:) 1/2 * 

dS1 - -- 

Here, the radical branch is chosen so that 1/1 = 1 as C -+ 0. If the functions 
Sl(x), S3(x) are known, the Witting solution may be expressed in the form 

w = s1 + s3. 
From (4.5) it follows that 
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Integrating it, we obtain the relation 

S3 + x = log S1 + const. 

We can find the integration constant by considering the asymptotics at [ + 0. This 
gives the result 

S1 x + w = s1 +log -. 
El 

The solution of the first of equations (4.5) has singularities at the points where 
1 + S: = 0. We shall show that one of these singularities lies on the ray [ = rein/3 
corresponding to the free surface. From (4.3) it follows that 

S1 = ein/3Q (4.7) 

on this ray. Here Q is the real-valued function in the vicinity of the point 5 = 0 
defined by the series 

Q = Elr - E4r4 + E7r7 - . . . . 
But in general Q is not a real-valued function. According to (4.5) this function satisfies 

When cp varies from -a to a certain value 9’ the function Q monotonically increases 
from 0 to 1. The function Q cannot be real-valued for cp > cp’. Hence x’ = cp* + in/3 
is a singular point. 

Let us find cp’. Integrating (4.8) gives 

1/2 1 - (1 - ~ 3 ) l j ’  
3cp + const = 2 (1 - Q’) + log 

1 + (1  - Q3)1’2’ 
(4.9) 

The integration constant is defined by the asymptotics at cp = logr + -a. Next 
inserting Q3 = 1 into (4.9), we have 

cp* = ln(6/E1), 6 = (4/e’)li3 e 0.815. (4.10) 

Let us introduce the auxiliary function 

u(x)  = s;. (4.11) 

From (4.5) it follows that 
1 (1 + u)1’2 

dx = -du 
3 U 

Integration of this equation gives the result 

(4.12) 

The formulae (4.6), (4.10), (4.1 l), (4.12) completely describe the Witting solution 
for 8 = n/3. Note that (4.12) is the Schwarz-Christoffel formula for the conformal 
mapping of the upper half-plane u shown in figure 3(a), onto a polygon in the plane 
x, shown in figure 3(b). The function (4.11) gives the conformal mapping of the upper 
half-plane u onto a wedge of interior angle n/3 in the plane S1 (figure 3c). The side 
AB of the polygon corresponds to the upper boundary of the strip, wherein the initial 
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0 

- 4  0 4 8 12 16 

Xlh, 

FIGURE 4. A steady flow of depth ho, passing from the left is sucked into a slit between a 
rectilinear bottom and a curvilinear roof. The streamlines of the flow are shown. 

2 

0 

- 2  -1 0 1 2 

Xlh, 

FIGURE 5. The picture of the flow which is close to the maximal-amplitude solitary wave. 

Hence, this boundary may be considered as a curvilinear wall. The asymptotic analysis 
of the solution as cp + cc (w = n/3) gives the following asymptotic behaviour for this 
wall : 

The curvilinear wall approaches the bottom as X + 00, the velocity of the flow tends 
to infinity, and the pressure tends to minus infinity. Thus the exact solution of the 
free boundary problem describing fluid suction under a curvilinear roof is found. 

The roof shape is given by rather complicated formulae, conversely the shape of 
the free surface is given by simple explicit formulae. For the derivation let us insert 
(4.13) in (2.3) and set El = 

x - cp2/3, y - p 3 .  

Separating the real and imaginary parts we have 

(4.14) Y 33/2 x 3  
-=-(Q-l+210gQ), - -  
ho 2~ ho 2~ 

- Q + 1  (0 d Q d 1). - 

The streamlines and the roof shape are shown in figure 4. The corresponding 
picture with equal scales on each axis is given in figure 5. 
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The solution constructed for 8 = x/3 is close to the maximal-amplitude solitary 
wave. This is most evident from figure 5 where the streamlines are near-symmetrical 
with respect to the vertical axis. Let us drop a perpendicular to the bottom from 
the contact point of the free surface and a curvilinear roof. A comparison with 
numerical results shows that the part of the constructed flow located to the left of 
the perpendicular ( X  < 0) is close to the left half of the maximal-amplitude solitary 
wave flow. For example, substituting Q = 1 in (4.14) one can find the dimensionless 
amplitude 

Yo(0) - ho 33/2 
h0 27c 

=-  = 0.82699. 

This value coincides with that of (1.1) but differs by 0.74% from that of (1.2). 
Using (4.14) one can calculate the dimensionless doubled mass of the left half of the 
constructed flow: 

This value differs by 0.2% from the mass of a limiting-amplitude solitary wave of 
1.970 numerically calculated by Williams (1981) and Witting (1981). Similarly, the 
dimensionless doubled potential energy of the left half of the constructed solution 

27 
gYdY - M = - = 0.4354 

v = ~ 2 lo dX s,""' 
-aJ 2x3 

differs by 0.5% from the value of 0.4376 calculated for the solitary wave by the same 
authors. The difference between the constructed solution and the maximal-amplitude 
solitary wave does not exceed 1%. 

The solutions of system (3.6) for other rational 8/x c 1/3 are likewise the solutions 
of the free boundary problems for flows with gravity. These flows are also close to 
solitary waves of non-maximal amplitude. 

The author acknowledges the kind attention and help given by Academician 
L. V. Ovsyannikov and Professor V. M. Teshukov to this study. 
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